

Single Output

HIGH RELIABILITY DC-DC CONVERTER

16-40V

16-50V

2V 0.42A

79% @ 0.21A / 82% @ 0.42A

Continuous Input

Transient Input

Output Output

Efficiency

Full Power Operation: -55°C to +125°C

The MilQor® series of high-reliability DC-DC converters brings SynQor's field proven high-efficiency technology to the Military/Aerospeace industry. SynQor's innovative QorSeal® packaging approach ensures survivability in the most hostile environments. Compatible with the industry standard format, these converters operate at a fixed frequency, have no opto-isolators, and follow conservative component derating guidelines. They are designed and manufactureed to comply with a wide range of military standards.

DESIGNED & MANUFACTURED IN THE USA FEATURING QORSEAL® HI-REL ASSEMBLY

Design Process

MOSA series converters are:

- Designed for reliability per NAVSO-P3641-A guidelines
- Designed with components derated per:
 - MIL-HDBK-1547A
 - NAVSO P-3641A

Qualification Process

MQSA series converters are qualified to:

- MIL-STD-810F
 - consistent with RTCA/D0-160E
- SynQor's First Article Qualification
 - consistent with MIL-STD-883F
- SynQor's Long-Term Storage Survivability Qualification
- SynQor's on-going life test

In-Line Manufacturing Process

- AS9100 and ISO 9001 certified facility
- Full component traceability
- Temperature cycling
- Constant acceleration
- •24, 96, 160 hour burn-in
- Three level temperature screening

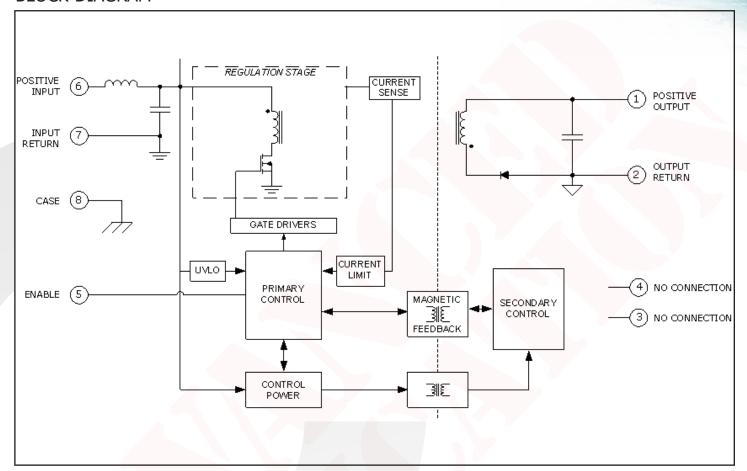
Features

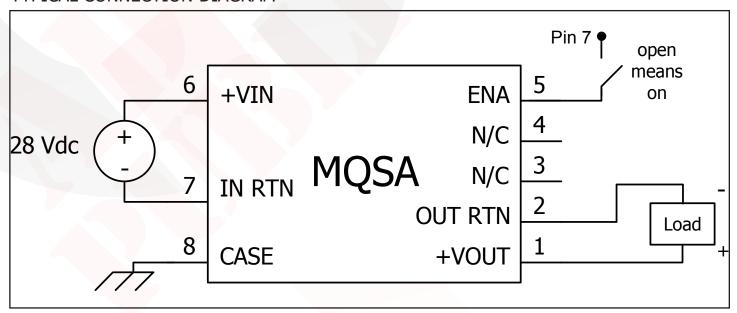
- Primary referenced enable
- No opto-isolators
- Output over-voltage protection
- Continuous short circuit and overload protection
- Input under-voltage shutdown

Specification Compliance

MQSA series converters (with MQHE filter) are designed to meet:

Page 1


- MIL-HDBK-704-8 (A through F)
- RTCA/DO-160 Section 16, 17, 18
- MIL-STD-1275 (B, D) for $V_{IN} > 16V$
- DEF-STAN 61-5 (part 6)/(5, 6) for V_{IN} > 16V
- MIL-STD-461 (C, D, E, F)
- RTCA/DO-160(E, F, G) Section 22


Output: 12V

Current: 0.42A

BLOCK DIAGRAM

TYPICAL CONNECTION DIAGRAM

Output: 12V

Current: 0.42A

MQSA-28-12S ELECTRIC	CAL (CHAF	RACT	ERI	STICS	
Parameter	Min.	Typ.	Max.	Units	Notes & Conditions	Group A
Specifications subject to change without notice		/ //			Vin=28V dc ±5%, Iout=0.42A, CL=0μF, free running	Subgroup
•					(see Note 10) unless otherwise specified	(see Note 8)
ABSOLUTE MAXIMUM RATINGS						
Input Voltage			60			
Non-Operating			60	V		
Operating			60	V	See Note 1	
Reverse Bias (Tcase = 125°C)			-0.8	V		
Reverse Bias (Tcase = -55° C)			-1.2	V		
Isolation Voltage (I/O to case, I to O)						
Continuous	-500		500	V		
Transient (≤100µs)	-800		800	V		
Operating Case Temperature	-55		125	°C	HB Grade Products, See Notes 2 & 13	
Storage Case Temperature	-65		135	°C		
Lead Temperature (20s)			300	°C		
Voltage at ENA1	-1.2		50	V		
INPUT CHARACTERISTICS						
Operating Input Voltage Range	16	28	40	V	Continuous	1, 2, 3
" " "	16	28	50	V	Transient, 1s	
Input Under-Voltage Shutdown					See Note 3	
Turn-On Voltage Threshold	14.00	14.60	15.20	V		1, 2, 3
Turn-Off Voltage Threshold	12.00	12.85	13.70	V		1, 2, 3
Shutdown Voltage Hysteresis	12.00	1.75	2017	V		-, -, -
Maximum Input Current		1175	0.40	A	Vin = 16V; Iout = 0.42A	
No Load Input Current (operating)		15	30	mA	1111 201, 2001	1, 2, 3
Disabled Input Current		2	4	mA	Vin = 16V, 28V, 50V; ENA	1, 2, 3
Input Terminal Current Ripple (pk-pk)		30	55	mA	Bandwidth = 100kHz - 10MHz; see Figure 14	1, 2
OUTPUT CHARACTERISTICS		30	33	1117 (Danamach 100ki 2 10 ii 12/ 500 i igare 1 i	1/2
Output Voltage Set Point (Tcase = 25°C)	11.88	12.00	12.12	V	Vout at sense leads	1
Output Voltage Set Point Over Temperature	11.82	12.00	12.18	V	"	2, 3
Output Voltage Line Regulation	-30	12.00	30	mV	"; Vin = 16V, 28V, 40V; Iout=0.42A	1 2 3
Output Voltage Load Regulation	-40		40	mV	"; Vout @ (Iout=0A) - Vout @ (Iout=0.42A)	1, 2, 3 1, 2, 3
Total Output Voltage Range	11.76	12.00	12.24	V	" Vode & (10de-0.1271)	1, 2, 3
Output Voltage Ripple and Noise Peak to Peak	11.70	15	75	mV	Bandwidth = 10MHz; CL=11µF	1, 2, 3
Operating Output Current Range	0	13	0.42	A	Dandwidti - 1011112, CL-11pi	1, 2, 3
Operating Output Current Range Operating Output Power Range	0		5.0	w		1, 2, 3
Output DC Current-Limit Inception	0.5	0.8	1.1	A	See Note 3	1, 2, 3
Maximum Output Capacitance	0.5	0.0	1.1	μF	See Note 3	See Note 4
			15	μΓ		See Note 4
DYNAMIC CHARACTERISTICS Output Voltage Deviation Load Transient					See Note 5	
Output Voltage Deviation Load Transient	600	200		\/		4.5.6
For a Pos. Step Change in Load Current	-600	-300	600	mV	Total Iout step = 0.21A to 0.42A, 0.042A to 0.21A; CL=11 μ F	4, 5, 6
For a Neg. Step Change in Load Current		300	600	mV	"	4, 5, 6
Output Voltage Deviation Line Transient					Vin step = 16V to 50V; CL=11µF; see Note 6	
For a Pos. Step Change in Line Voltage	-150		150	mV		
For a Neg. Step Change in Line Voltage	-150		150	mV		
Turn-On Transient						
Output Voltage Rise Time		10		ms	Vout = 1.2V to 10.8V; Full Resistive Load	4, 5, 6
Output Voltage Overshoot		0	2	%	Resistive load	See Note 4
Turn-On Delay, Rising Vin		2.0		ms	ENA = 5V; see Note 7	4, 5, 6
Turn-On Delay, Rising ENA		2.0	5.0	ms	See Note 7	4, 5, 6
EFFICIENCY						
Iout = 0.42 A (16 Vin)	78	82		%		
Tout 0.42 A (20 V/m)	70	02		%		1, 2, 3
Iout = 0.42 A (28 Vin)	78	82		%		1, 2, 3

Doc.# 005-0006282 Rev. 1 05/21/15 Product# MQSA-28-12S Phone 1-888-567-9596 www.SynQor.com Page 3

Output: 12V

Current: 0.42A

MQSA-28-12S ELECTRICAL CHARACTERISTICS (Continued)

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions	Group A
Specifications subject to change without notice					Vin=28V dc ±5%, Iout=0.42A, CL=0µF, free running (see Note 10) unless otherwise specified	Subgroup (see Note 8)
ISOLATION CHARACTERISTICS						
Isolation Voltage					Dielectric strength	
Input RTN to Output RTN	500			V		1
Any Input Pin to Case	500			V		1
Any Output Pin to Case	500			V		1
Isolation Resistance (in rtn to out rtn)	100			ΜΩ		1
Isolation Resistance (any pin to case)	100			ΜΩ		1
Isolation Capacitance (in rtn to out rtn)		22		nF		1
FEATURE CHARACTERISTICS						
Switching Frequency (free running)	500	550	600	kHz		See Note 4
Enable Control (ENA)						
Off-State Voltage			0.8	V		1, 2, 3
Module Off Pulldown Current	80			μA	Current drain required to ensure module is off	See Note 4
On-State Voltage	2			V		1, 2, 3
Module On Pin Leakage Current			20	μA	Imax draw from pin allowed with module still on	See Note 4
Pull-Up Voltage	3.2	4.0	4.8	V	See Figure A	
RELIABILITY CHARACTERISTICS						
Calculated MTBF (MIL-STD-217F2)						
GB @ Tcase = 70°C		TBD		10 ³ Hrs.		
AIF @ Tcase = 70°C		TBD		10 ³ Hrs.		
WEIGHT CHARACTERISTICS						
Device Weight		15.7		g		

Electrical Characteristics Notes

- 1. Derate output power to 50% of rated power at Tcase = 135°C.
- 2. Low state of input voltage must persist for about 200µs to be acted on by the shutdown circuitry.
- 3. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value. Features Description section.
- 4. Parameter not tested but guaranteed to the limit specified.
- 5. Load current transition time $\geq 0.01 \text{A}/\mu\text{s}$.
- 6. Line voltage transition time \geq 100µs.
- 7. Input voltage rise time $\leq 250 \mu s$.
- 8. Only the ES and HB grade products are tested at three temperatures. The C grade products are tested at one temperature. Please refer to the ESS table for details.
- 9. These derating curves apply for the ES and HB grade products. The C grade product has a maximum case temperature of 70°C and a maximum junction temperature rise of 20°C above TCASE.
- 10. The specified operating case temperature for ES grade products is -45°C to 100°C. The specified operating case temperature for C grade products is 0°C to 70°C.

MQSA-28-12S Output: 12V

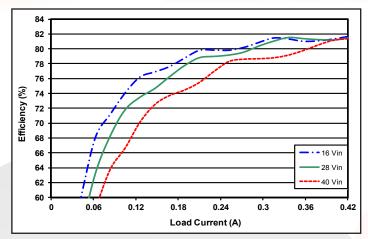


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at Tcase=25°C.

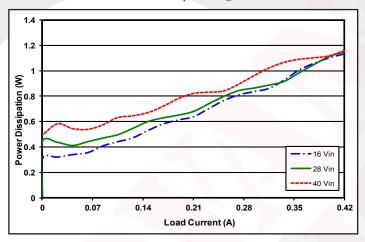


Figure 3: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at Tcase=25°C.

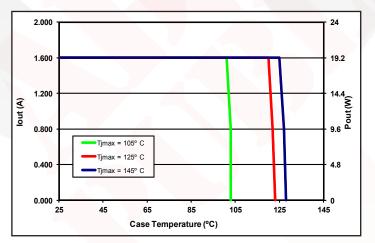


Figure 5: Output Current / Output Power derating curve as a function of Tcase and the Maximum desired power MOSFET junction temperature at Vin = 28V (see Note 9).

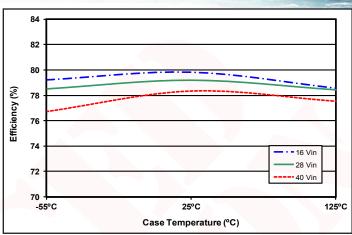


Figure 2: Efficiency at nominal output voltage and 60% rated power vs. case temperature for input voltage of 16V, 28V, and 40V.

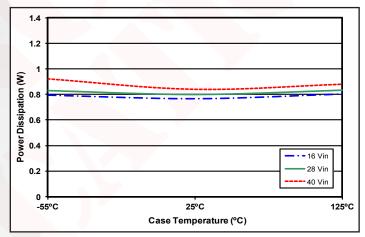


Figure 4: Power dissipation at nominal output voltage and 60% rated power vs. case temperature for input voltage of 16V, 28V, and 40V.

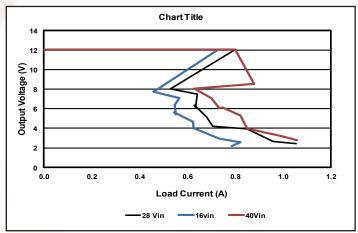
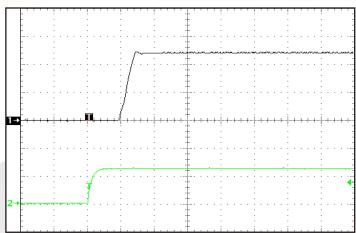



Figure 6: Output voltage vs. load current showing typical current limit curves at Vin = 28V.

Output: 12V

Figure 7: Turn-on transient at full resistive load and zero output capacitance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout (5V/div) (5mS/div). Ch 2: ENA1 (2V/div).

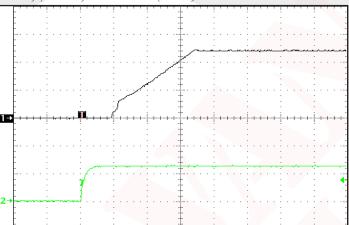


Figure 9: Turn-on transient at full resistive load and zero output capacitance initiated by Vin. ENA1 previously high. Ch 1: Vout (5V/div). Ch 2: Vin (20V/div).

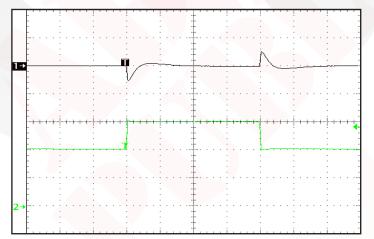


Figure 11: Output voltage response to step-change in load current 50%-75%-50% of Iout (max). Ch 1: Vout (200mV/div) (2mS/div). Ch 2: Iout (100mA/div).

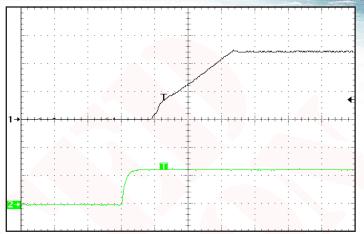


Figure 8: Turn-on transient at full resistive load and 26uF output capacitance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout (5V/div) (5mS/div). Ch 2: ENA1 (2V/div).

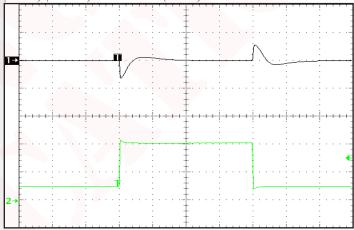


Figure 10: Output voltage response to step-change in load current 10%-50%-10% of Iout (max). Ch 1: Vout (500mV/div) (2mS/div). Ch 2: Iout (100mA/div).

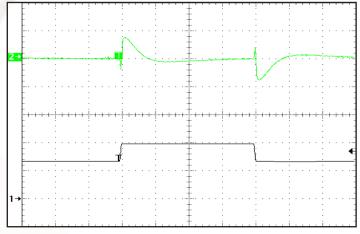


Figure 12: Output voltage response to step-change in input voltage (28V - 40V - 28V). Ch 1: Vin(20V/div). Ch 2: Vo (50mV/div).

Output: 12V

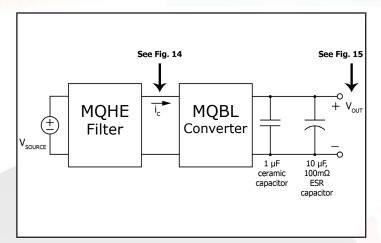


Figure 13: Test set-up diagram showing measurement points for Input Terminal Ripple Current (Figure 14) and Output Voltage Ripple (Figure 15)

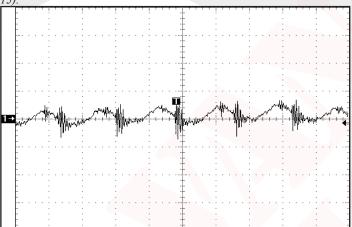


Figure 15: Output voltage ripple, Vout, at nominal input voltage and rated load current (10mV/div). Bandwidth: 20MHz. See Figure 13.

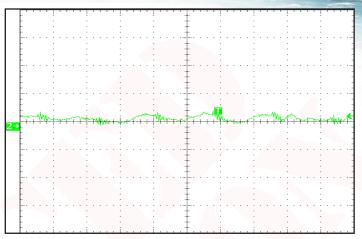


Figure 14: Input terminal current ripple, ic, at full rated output current and nominal input voltage with SynQor MQ filter module (5mA/div).

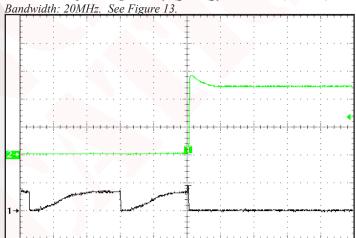


Figure 16: Rise of output voltage after the removal of a short circuit across the output terminals. Ch 1: Vout (5V/div). Ch 2: Iout (5A/div).

Output: 12V

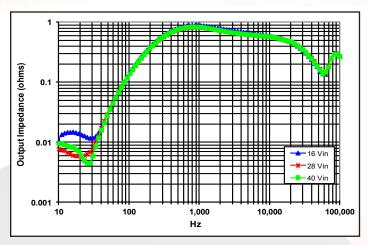
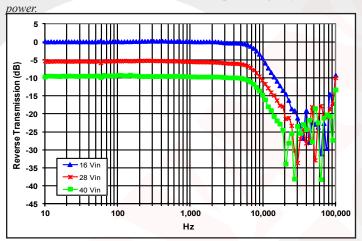



Figure 17: Magnitude of incremental output impedance (Zout = vout/iout) for minimum, nominal, and maximum input voltage at full rated

Figure 19: Magnitude of incremental reverse transmission (RT = iin/iout) for minimum, nominal, and maximum input voltage at full rated power.

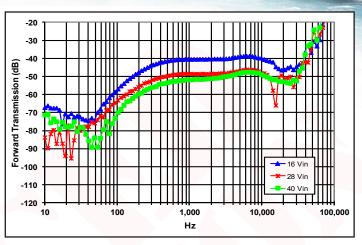
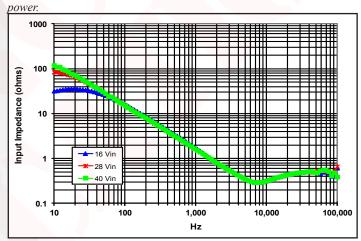



Figure 18: Magnitude of incremental forward transmission (FT = vout/vin) for minimum, nominal, and maximum input voltage at full rated

Figure 20: Magnitude of incremental input impedance (Zin = vin/iin) for minimum, nominal, and maximum input voltage at full rated power.

BASIC OPERATION AND FEATURES

The MQSA DC/DC converter uses a single stage power conversion topology. A flyback-converter is used to keep the output voltage constant over variations in line, load, and temperature. The converter switches at a fixed frequency for predictable EMI performance. Rectification of the output is accomplished with diodes.

An input under-voltage shutdown feature with hysteresis is provided, as well as an output over-voltage limit. There is also an output current limit that is nearly constant as the load impedance decreases. When a load fault is removed, the output voltage rises exponentially to its nominal value with minimal overshoot.

The following sections describe the use and operation of additional control features provided by the MQSA converter.

CONTROL FEATURES

ENABLE: The MQSA converter has one enable pin, ENA (pin 5), which is referenced with respect to the converter's input return (pin 7). It must have a logic high level for the converter to be enabled; a logic low inhibits the converter.

The enable pin is internally pulled high so that an open connection will enable the converter. Figure A shows the equivalent circuit looking into the enable pin. It is TTL compatible and has hysteresis.

SHUT DOWN: The MQSA converter will shut down in response to only three conditions: ENA input low, VIN input below under-voltage shutdown threshold, and output voltage above the output over-voltage threshold.

INPUT UNDER-VOLTAGE SHUTDOWN: The MQSA converter has an under-voltage shutdown feature that ensures the converter will be off if the input voltage is too low. The input voltage turn-on threshold is higher than the turn-off threshold.

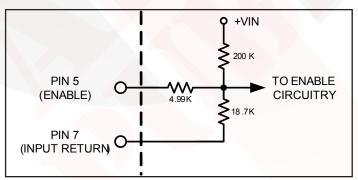


Figure A: Circuit diagram shown for reference only, actual circuit components may differ from values shown for equivalent circuit.

OUTPUT OVER-VOLTAGE SHUTDOWN: The MQSA converter will shut down if the voltage at its power output pins ever exceeds about 130% of the nominal value.

CURRENT LIMIT: In the event of excess load, the MQSA converter will quickly reduce its output voltage to keep the load current within safe limits.

If the converter is connected to an external heatsink, the heatsink will help to make the converter's case top a uniform temperature. How well it does so depends on the thickness of the heatsink and on the thermal conductance of the interface layer (e.g. thermal grease, thermal pad, etc.) between the case and the heatsink. Unless this is done very well, it is important not to mistake the heatsink's temperature for the maximum case temperature. It is easy for them to be as much as 5-10°C different at full power and at high temperatures. It is suggested that a thermocouple be attached directly to the converter's case through a small hole in the heatsink when investigating how hot the converter is getting. Care must also be made to ensure that there is not a large thermal resistance between the thermocouple and the case due to whatever adhesive might be used to hold the thermocouple in place.

INPUT SYSTEM INSTABILITY: This condition can occur because any dc-dc converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it.

THERMAL CONSIDERATIONS: Figure 5 shows the suggested Power Derating Curves for this converter as a function of the case temperature and the maximum desired power MOSFET junction temperature. All other components within the converter are cooler than its hottest MOSFET, which at full power is no more than 20°C higher than the case temperature directly below this MOSFET.

The Mil-HDBK-1547A component derating guideline calls for a maximum component temperature of 105°C. Figure 5 therefore has one power derating curve that ensures this limit is maintained. It has been SynQor's extensive experience that reliable long-term converter operation can be achieved with a maximum component temperature of 125°C. In extreme cases, a maximum temperature of 145°C is permissible, but not recommended for long-term operation where high reliability is required. Derating curves for these higher temperature limits are also included in Figure 5. The maximum case temperature at which the converter should be operated is 135°C.

Output: 12V

Current: 0.42A

CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS

Screening	Consistent with MIL-STD-883F	C-Grade (specified from 0 °C to +70 °C	ES-Grade (specified from -45 °C to +100 °C	HB-Grade (specified from -55 °C to +125 °C)
Element Evaluation		No	Yes	Yes
Internal Visual	*	Yes	Yes	Yes
Temperature Cycle	Method 1010	No	Condition B (-55 °C to +125 °C)	Condition C (-65 °C to +150 °C)
Constant Acceleration	Method 2001 (Y1 Direction)	No	500g	Condition A (5000g)
Burn-in	Method 1015	24 Hrs @ +125 °C	96 Hrs @ +125 °C	160 Hrs @ +125 °C
Final Electrical Test	Method 5005 (Group A)	+25 °C	-45, +25, +100 °C	-55, +25, +125 °C
Mechanical Seal, Thermal, and Coating Process		Full QorSeal	Full QorSeal	Full QorSeal
External Visual	2009	*	Yes	Yes
Construction Process		QorSeal	QorSeal	QorSeal

* Per IPC-A-610 Class 3

MilQor converters and filters are offered in three variations of environmental stress screening options. All MilQor converters use SynQor's proprietary QorSeal® Hi-Rel assembly process that includes a Parylene-C coating of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. Each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES- and HB-Grades are also constructed of components that have been procured through an element evaluation process that prequalifies each new batch of devices.

Output: 12V

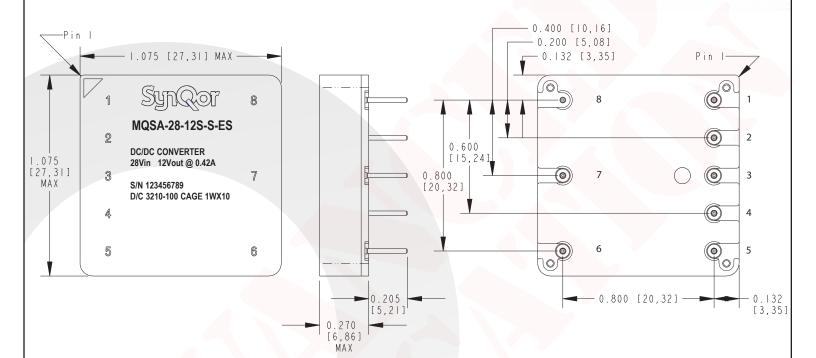
Current: 0.42A

MIL-STD-810F Qualification Testing

NAU CED OLOF TO A		D-610F Qualification festing			
MIL-STD-810F Test	Method	Description			
Fungus	508.5	Table 508.5-I			
Altitude	500.4 - Procedure I	Storage: 70,000ft. / 2 Hr. duration			
Attitude	500.4 - Procedure II	Operating; 70,000ft. / 2 Hr. duration; Ambient Temperature			
Rapid Decompression	500.4 - Procedure III	Storage: 8,000ft. to 40,000ft.			
Acceleration	513.5 - Procedure II	Operating - 15g's			
Salt Fog	509.4	Storage			
High Tanananatum	501.4 - Procedure I	Storage: 135°C / 3 hrs			
High Temperature	501.4 - Procedure II	Operating: 100°C / 3 hrs			
Law Tamanamatuma	502.4 - Procedure I	Storage: -65°C / 4 hrs			
Low Temperature	502.4 - Procedure II	Operating: -55°C / 3 hrs			
Temperature Shock	503.4 - Procedure I - C	Storage: -65°C to 135°C; 12 cycles			
Rain	506.4 - Procedure I	Wind Blown Rain			
Immersion	512.4 - Procedure I	Non-Operating			
Humidity	507.4 - Procedure II	Aggravated cycle @ 95% RH (Figure 507.5-7 aggravated temp - humidity cycle, 15 cycles)			
Random Vibration	514.5 - Procedure I	10-2000 Hz, PSD level of 1.5 g2/Hz(54.6grms), duration = 1 hr/axis			
Charle	516.5 - Procedure I	20g's peak, 11ms, Functional Shock (Operating no load) (saw tooth)			
Shock	516.5 - Procedure VI	Bench Handling Shock			
Sinusoidal vibration	514.5 - Category 14	Rotary wing aircraft - helicopter, 4hrs/axis, 20g's (sine sweep from 10 - 500HZ)			
Sand and Dust	510.4 - Procedure I	Blowing Dust			
Sand and Dust	510.4 - Procedure II	Blowing Sand			

Output: 12V

Current: 0.42A


First Article Testing consistent with MIL-STD-883F

Method	Description
5005	
2016	
2015.13	
2003.8	
2004.5	
1009.8	Condition "A"
2025.4	
1001	Condition "C"
3015.7	Class 2
1008.2	Condition "C"
2005.2	Condition "A"
2026	Condition "II K"
1005.8	
1006	
1010.8	Condition "C"
2001.2	Condition "A"
1011.9	Condition "B"
1010.8	Condition "C"
1004.7	With Sub cycle
2002.4	Condition "B"
2007.3	Condition "A"
	5005 2016 2015.13 2003.8 2004.5 1009.8 2025.4 1001 3015.7 1008.2 2005.2 2026 1005.8 1006 1010.8 2001.2 1011.9 1010.8 1004.7

Output: 12V

Current: 0.42A

NOTES

- 1) Pins 0.025" (0.64mm) diameter
- 2) Pins Material: Copper Alloy Finish: Gold over Nickel Plate
- 3) All dimensions in inches (mm)

 Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm)

 x.xxx +/-0.010 in. (x.xx +/-0.25mm)
- 4) Weight: 0.55 oz (15.7 g) typical
- 5) Workmanship: Meets or exceeds IPC-A-610 Class III
- 6) Print Labeling on Top Surface per Product Label Format Drawing

PIN DESIGNATIONS

Pin #	Function
1	Positive output
2	Output return
3	No Connection
4	No Connection
5	Enable
6	Positive input
7	Input return
8	Case

Output: 12V

Current: 0.42A

MilQor Converter FAMILY MATRIX

The tables below show the array of MilQor converters available. When ordering SynQor converters, please ensure that you use the complete part number according to the table in the last page. Contact the factory for other requirements.

	Single Output					
	5V	12V	15V	28V		
	(05S)	(12S)	(15 S)	(28\$)		
MQSA-28						
16-40Vin Cont.	1A	0.42A	0.33A	0.18A		
16-50Vin 1s Trans.*	IA	0.42A	0.33A	U. 16A		
Absolute Max Vin = 60V						
MQSA-28E						
16-70Vin Cont.	1A	0.42A	0.33A	0.18A		
16-80Vin 1s Trans.*	IA	0.42A	0.33A	U. 16A		
Absolute Max Vin =100V						

Dual Output †									
5V	12V	15V							
(05D)	(12D)	(15D)							
1A Total	0.42A Total	0.33A Total							
1A Total	0.24A Total	0.33A Total							

	Single Output										
	1.5V	1.8V	2.5V	3.3V	5V	6V	7.5V	9V	12V	15V	28V
	(1R5S)	(1R8S)	(2R5S)	(3R3S)	(05S)	(06S)	(7R5S)	(09S)	(12S)	(15S)	(28\$)
MQBL-28											
16-40Vin Cont.	0.4			6A	4A	2.24	0.04	2.2A	1.6A	1.3A	0.74
16-50Vin 1s Trans.*	8A 8	8A 8A	8A	6A	44	3.3A	2.6A	2.2A 1.0A	1.3A	0.7A	
Absolute Max Vin = 60V											
MQBL-28E											
16-70Vin Cont.	8A	0.4	0.4	CA	4.0	0.04	0.04	0.04	4.04	4.04	0.74
16-80Vin 1s Trans.*		8A	8A	6A	4A	3.3A	2.6A	2.2A	1.6A	1.3A	0.7A
Absolute Max Vin =100V											

Dual Output †									
5V	12V	15V							
(05D)	(12D)	(15D)							
4A Total	1.6A Total	1.3A Total							
4A Total	1.6A Total	1.3A Total							

Check with factory for availability.
†80% of total output current available on any one output.
*Converters may be operated at the highest transient input voltage, but some component electrical and thermal stresses would be beyond MIL-HDBK-1547A guidelines.

Output: 12V

Current: 0.42A

PART NUMBERING SYSTEM

The part numbering system for SynQor's MilQor DC-DC converters follows the format shown in the table below.

Not all combinations make valid part numbers, please contact SynQor for availability. See the Product Summary web page for more options.

Example: MQSA-28-12S-S-ES

Model	Input	Output V	/oltage(s)	Package Outline/	Screening	
Name	Voltage Range	Single Dual Output Output		Pin Configuration	Grade	
MQSA	28 28E	05S 12S 15S 28S	05D 12D 15D	S	C ES HB	

APPLICATION NOTES

A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.

Contact SynQor for further information and to order:

Phone: 978-849-0600 Toll Free: 1-888-567-9596 Fax: 978-849-0602

E-mail: mqnbofae@synqor.com

Web: www.synqor.com
Address: 155 Swanson Road

Boxborough, MA 01719

USA

Warranty

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.